
Exploiting Transition Locality in the Disk Based
Murϕ Verifier�

Giuseppe Della Penna1, Benedetto Intrigila1, Enrico Tronci2,��, and
Marisa Venturini Zilli2

1 Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
{gdellape,intrigil}@univaq.it

2 Dip. di Informatica Università di Roma “La Sapienza”,
Via Salaria 113, 00198 Roma, Italy
{tronci,zilli}@dsi.uniroma1.it

Abstract. The main obstruction to automatic verification of Finite
State Systems is the huge amount of memory required to complete the
verification task (state explosion). This motivates research on distributed
as well as disk based verification algorithms.
In this paper we present a disk based Breadth First Explicit State Space
Exploration algorithm as well as an implementation of it within the Murϕ
verifier. Our algorithm exploits transition locality (i.e. the statistical fact
that most transitions lead to unvisited states or to recently visited states)
to decrease disk read accesses thus reducing the time overhead due to
disk usage.
A disk based verification algorithm for Murϕ has been already proposed
in the literature. To measure the time speed up due to locality exploita-
tion we compared our algorithm with such previously proposed algo-
rithm. Our experimental results show that our disk based verification
algorithm is typically more than 10 times faster than such previously
proposed disk based verification algorithm.
To measure the time overhead due to disk usage we compared our algo-
rithm with RAM based verification using the (standard) Murϕ verifier
with enough memory to complete the verification task. Our experimental
results show that even when using 1/10 of the RAM needed to complete
verification, our disk based algorithm is only between 1.4 and 5.3 times (3
times on average) slower than (RAM) Murϕ with enough RAM memory
to complete the verification task at hand.
Using our disk based Murϕ we were able to complete verification of a
protocol with about 109 reachable states. This would require more than
5 gigabytes of RAM using RAM based Murϕ.

1 Introduction

State Space Exploration (Reachability Analysis) is at the very heart of all al-
gorithms for automatic verification of concurrent systems. As well known, the
� This research has been partially supported by MURST projects MEFISTO and
SAHARA

�� Corresponding Author: Enrico Tronci. Tel: +39 06 4991 8361 Fax: +39 06 8541 842

M.D. Aagaard and J.W. O’Leary (Eds.): FMCAD 2002, LNCS 2517, pp. 202–219, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Exploiting Transition Locality in the Disk Based Murϕ Verifier 203

main obstruction to automatic verification of Finite State Systems (FSS) is the
huge amount of memory required to complete state space exploration (state ex-
plosion).

For protocol like systems, Explicit State Space Exploration often outperforms
Symbolic (i.e. OBDD based, [1,2]) State Space Exploration [8]. Since here we
are mainly interested in protocol verification, we focus on explicit state space
exploration. Tools based on explicit state space exploration are, e.g., SPIN [6,
14] and Murϕ [4,11].

In our context, roughly speaking, two kinds of approaches have been studied
to counteract (i.e. delay) state explosion: memory saving and auxiliary storage.

In a memory saving approach essentially one tries to reduce the amount of
memory needed to represent the set of visited states. Examples of the memory
saving approach are, e.g., in [23,9,10,17,18,7].

In an auxiliary storage approach one tries to exploit disk storage as well as
distributed processors (network storage) to enlarge the available memory (and
CPU). Examples of this approach are, e.g., in [15,16,12,20,13,5].

Exploiting statistical properties of protocol transition graphs it is possible
to trade space with time [21,22], thus enlarging the class of systems for which
automatic verification is feasible. In particular in [21] it has been shown that
protocols exhibit locality. That is, w.r.t. levels of a Breadth First Search (BFS),
state transitions tend to be between states belonging to close levels of the transi-
tion graph. In [21] an algorithm was also presented exploiting locality in order to
save RAM as well as an implementation of such an algorithm within the Murϕ
verifier. It is then natural and worth doing looking for a way to exploit locality
also when using a disk based state exploration algorithm.

In this paper we present a Disk based Breadth First Search (DBFS) algo-
rithm that exploits transition locality. Our algorithm is obtained by modifying
the DBFS algorithm presented in [16]. Our main results can be summarized as
follows.

– We present a DBFS algorithm that is able to exploit transition locality.
Essentially, our algorithm is obtained from the one in [16] by using only a
suitable subset of the states stored on disk to clean up the unchecked states
BFS queue of [16]. By reducing disk read accesses we also reduce our time
overhead w.r.t. a RAM based BFS state space exploration.

– We implemented our algorithm within the Murϕ verifier. As the algorithm
in [16], our algorithm is compatible with all state reduction techniques im-
plemented in the Murϕ verifier.

– We run our DBFS algorithm on some of the protocols included in the stan-
dard Murϕ distribution [11]. Our experimental results can be summarized
as follows.

• Even when using 1/10 of the RAM needed to complete verification, our
disk based Murϕ is only between 1.4 and 5.3 times slower (3 times on
average) than (RAM based) standard Murϕ [11] with enough RAM to
complete the verification task at hand.

204 G.D. Penna et al.

• Our disk based algorithm is typically more than 10 times faster than the
disk based algorithm presented in [16].

– Using our disk based Murϕ we were able to complete verification of a protocol
with almost 109 reachable states. Using standard Murϕ this protocol would
require more than 5 gigabytes of RAM.

2 Transition Locality for Finite State Systems

In this section we define (from [21]) our notion of locality for transitions. For
our purposes, a protocol is represented as a Finite State System.

A Finite State System (FSS) S is a 4-tuple (S, I, A, R) where: S is a finite
set (of states), I ⊆ S is the set of initial states, A is a finite set (of transition
labels) and R is a relation on S×A×S. R is usually called the transition relation
of S.

Given states s, s′ ∈ S and a ∈ A we say that there is a transition from s
to s′ labeled with a iff R(s, a, s′) holds. We say that there is a transition from
s to s′ (notation R(s, s′)) iff there exists a ∈ A s.t. R(s, a, s′) holds. The set of
successors of state s (notation next(s)) is the set of states s′ s.t. R(s, s′).

The set of reachable states of S (notation Reach) is the set of states of S
reachable in 0 or more steps from I. Formally, Reach is the smallest set s.t.: 1.
I ⊆ Reach; 2. for all s ∈ Reach, next(s) ⊆ Reach.

The transition relation R of a given system defines a graph (transition graph).
Computing Reach (reachability analysis) means visiting (exploring) the transi-
tion graph starting from the initial states in I. This can be done, e.g., using a
Depth First Search (DFS) or a Breadth First Search (BFS). In the following we
will focus on BFS.

As well known a BFS defines levels on the transition graph. Initial states (i.e.
states in I) are at level 0. The states in (next(I) − I) (states reachable in one
step from I and not in I) are at level 1, etc.

Formally we define the set of states at level k (notation L(k)) as follows.
L(0) = I, L(k + 1) = {s′ | ∃s s.t. s ∈ L(k) and R(s, s′) and s′
∈ ∪i=k

i=0L(i)}.
Given a state s ∈ Reach we define level(s) = k iff s ∈ L(k). That is level(s)

is the level of state s in a BFS of S.
The set Visited(k) of states visited (by a BFS) by level k is defined as follows.

Visited(k) = ∪i=k
i=0L(i).

Informally, transition locality means that for most transitions source and
target states will be in levels not too far apart.

Let S = (S, I, A, R) be an FSS. A transition in S from state s to state s′ is
said to be k-local iff |level(s′) − level(s)| ≤ k.

In [21] it is shown experimentaly the following fact. For most protocols, we
have that for most states more that 75% of the transitions are 1-local.

Exploiting Transition Locality in the Disk Based Murϕ Verifier 205

/* Global Variables */
hash table M; /* main memory table */
file D; /* disk table */
FIFO queue Q_ck; /* checked state queue */
FIFO queue Q_unck; /* unchecked state queue */
int disk_cloud_size; /* number of blocks to be read from file D */

Fig. 1. Data Structures

3 A Disk Based State Space Exploration Algorithm
Exploiting Transition Locality

Magnetic disk read/write times are much larger than RAM read/write times.
Thus, not surprisingly, the main drawback of DBFS (Disk based Breadth First
Search) w.r.t. RAM-BFS (RAM based Breadth First Search) is the time overhead
due to disk usage. On the other hand, because of state explosion, memory is one
of the main obstructions to automatic verification. Thus using magnetic disks to
increase the amount of memory available during verification is very appealing.

In [16] a DBFS algorithm has been proposed for the Murϕ verifier. Here
we show that by exploiting transition locality (Section 2) the algorithm in [16]
can be improved. In particular, disk accesses for reading can be reduced. This
decreases the time overhead (w.r.t. a RAM-BFS) due to disk usage.

As in [16] we actually have two DBFS algorithms: one for the case in which
hash compaction [17,18] (Murϕ option -c) is enabled and one for the case in
which hash compaction is not enabled. As the algorithm in [16] our algorithm
can adjust for both cases. In the following we only present the version which
is compatible with the hash compaction option. When hash compaction is not
enabled the algorithm is actually simpler and can be easily obtained from the
algorithm compatible with the hash compaction option.

In the following we call LDBFS our Locality based DBFS algorithm. Figs. 1,
2, 3, 4, 5, 7 define our LDBFS using a C like programming language.

Search()
{
/* initialization */
M = empty; D = empty; Q_ck = empty; Q_unck = empty;
for each startstate s {Insert(s);} /* startstate generation */
do /* search loop */
{ while (Q_ck is not empty)

{
s = dequeue(Q_ck);
for all s’ in successors(s) {Insert(s’);}

} /* while */
Checktable();

} while (Q_ck is not empty); /* do */ } /* Search()*/

Fig. 2. Function Search()

206 G.D. Penna et al.

3.1 Data Structures

The data structures used by LDBFS are in Fig. 1 and are essentially the same
as the ones used in [16]. We have: a table M to store signatures of recently visited
states; a file D to store signatures of all visited states (old states); a checked queue
Q ck to store the states in the BFS level currently explored by the algorithm
(BFS front); an unchecked queue Q unck to store pairs (s, h) where s is a state
candidate to be on the next BFS level and h is the signature of state s.

As in [16] state signatures in M do not necessarily represent all visited states.
In M we just have recently visited states. Using the information in M we build the
unchecked queue Q unck, i.e. the set of states candidate to be on the next BFS
level. Note that the states in Q unck may be old (i.e. previously visited) since
using M we can only avoid re-inserting in Q unck recently visited states. As in
[16] we use disk file D to remove old state signatures from table M as well as to
check Q unck to get rid of old states. The result of this checking process is the
checked queue Q ck.

The main difference between our algorithm and the one in [16] is that in the
checking process we only use a subset of the state signatures in D. In fact we
divide D into blocks and then use only some of such blocks to clean up M and
Q unck. The global variable state cloud size holds the number of blocks of D
we use to remove old state signatures from table M. Our algorithm dynamically
adjust the value of state cloud size during the search.

Using only a subset of the states in D decreases disk usage and thus speeds
up verification. Note however that in [16] the checked queue Q ck only contains
new (i.e. not previously visited) states whereas in our case Q ck may also contain
some old (i.e. already visited) state. As a result our algorithm may mark as new
(unvisited) a state that indeed is old (visited). This means that some state may
be visited more than once and thus appended to file D more than once. However,
thanks to transition locality (Section 2), this does not happen too often. It is
exactly this statistical property of transition graphs that makes our approach
effective.

Table M is in main memory (RAM) whereas file D is on disk. We use disk
memory also for the BFS queues Q ck, Q unck which instead are kept in main
memory in the algorithm proposed in [16]. Our low level algorithm to handle
disk queues Q ck and Q unck is exactly the same one we used in Cached Murϕ
[21,3] for the same purpose, thus we do not show it here.

Note that all the data structures that grow with the state space size (namely:
D, Q ck, Q unck) are on disk in LDBFS. In [16] D is on disk, however state queues
are in RAM. Since states in the BFS queue are not compressed [11] we have that
for large verification problems the BFS queue can be a limiting factor for [16].
For this reason in LDBFS we implemented state queues on disk.

3.2 Function Search()

Function Search() (Fig. 2) is the same as the one used in the DBFS algorithm
in [16].

Exploiting Transition Locality in the Disk Based Murϕ Verifier 207

Insert(state s)
{ h = hash(s); /* compute signature of state s */
if (h is not in M)
{ insert h in M;
enqueue((s, h), Q_unck);
if (M is full) Checktable(); } /* if */ } /* Insert() */

Fig. 3. Function Insert()

Function Search() is a Breadth First Search using the checked queue Q ck
as the current level state queue.

Function Search() first loads the BFS queue (Q ck) with the initial states.
Then Search() begins dequeuing states from Q ck. For each successor s’ of each
state dequeued from Q ck, Search() calls Insert(s’) to store potentially new
states in M as well as in Q unck.

When queue Q ck becomes empty it means that all transitions from all states
in the current BFS level have been explored. Thus we want to move to the next
BFS level. Function Search() does this by calling function Checktable() which
refills the checked queue Q ck with fresh (non visited) states, if any, from the
unchecked queue Q unck. If, after calling Checktable(), Q ck is still empty it
means that all reachable states have been visited and the BFS ends.

3.3 Function Insert()

Functions Insert() (Fig. 3) is the same as the one used in the DBFS algorithm
in [16].

Consider the pair (s, h), where s is a state whose signature is h. If signature
h is not in table M then Insert(s) inserts pair (s, h) in the unchecked queue
Q unck and signature h in table M.

When M is full, function Insert() calls function Checktable() to clean up
M as well as the queues. Function Checktable() is also called at the end of each
BFS level (when Q ck is empty).

3.4 Exploiting Locality in State Filtering

Function Checktable() in the DBFS algorithm in [16] uses all state signatures
in disk file D to remove old states from Q unck. Exploiting locality (Section 2)
here we are able to use only a fraction of the state signatures on disk D to clean
up table M and queue Q unck. Disk usage is what slows down DBFS w.r.t. a
RAM-BFS. Thus, by reading less states from disk, we save w.r.t. [16] some of
the time overhead due to disk (read) accesses.

The rationale of our approach stems from the following observations.
First we should note that state signatures are appended to D in the same

order in which new states are discovered by the BFS. Thus, as we move towards
the tail of file D we find (signatures of) states whose BFS level is closer and closer
to the current BFS level, i.e. the BFS level reached by the search. From [21] we

208 G.D. Penna et al.

Checktable() /* old/new check for main memory table */
{
/* Disk cloud defined in Section 3.4 */

/*number of states deleted from M that are in disk cloud*/
deleted_in_cloud = 0;

/*number of states deleted from M that are on disk but
not in disk cloud*/

deleted_not_in_cloud = 0;

/* Randomly choose indexes of disk blocks to read (disk cloud) */
DiskCloud = GetDiskCloud();

/* something_not_in_cloud is true iff
there exists a state on disk that is not in the disk cloud */

if (there exists a disk block not selected in DiskCloud)
something_not_in_cloud = true;

else something_not_in_cloud = false;

Calibration_Required = QueryCalibration();

for each Block in D {
if (Block is in DiskCloud or Calibration_Required) {
for all state signatures h in Block {
if (h is in M) {
remove h from M;
if (Block is in DiskCloud) { deleted_in_cloud++; }
else /* Block is not in DiskCloud */

{deleted_not_in_cloud++; }}}}}

/* remove old states from state queue and add new states to disk */
while (Q_unck is not empty) {
(s, h) = dequeue(Q_unck);
if (h is in M) {append h to D; remove h from M; enqueue(Q_ck, s);}}

/* clean up the hash table */
remove all entries from M;

/* adjust disk cloud size, if requested */
if (Calibration_Required)
{ if (something_not_in_cloud and

(deleted_in_cloud + deleted_not_in_cloud > 0))
{Calibrate(deleted_in_cloud,deleted_not_in_cloud);}

if (disk access rate has been too long above a given critical limit)
{reset disk cloud size to its initial value with given probability P;}

} /* if Calibration_Required */ } /* Checktable() */

Fig. 4. Function Checktable() (state filtering)

Exploiting Transition Locality in the Disk Based Murϕ Verifier 209

GetDiskCloud()
{

Randomly select disk_cloud_size blocks from disk
according to the probability distribution shown in Fig. 6
Return the indexes of the selected blocks.

}

Fig. 5. Function GetDiskCloud()

know that most transitions are local, i.e. they lead to states that are on BFS
levels close to the current one. This means that most of the old states in M can
be detected and removed by only looking at the tail of file D.

We can take advantage of the above remarks by using the following approach.
We divide the disk file D into blocks. Rather than using the whole file D in the

Checktable() (as done in [16]) we only use a subset of the set of disk blocks. We
call such a subset disk cloud. The disk cloud is created by selecting at random
several disk blocks. Selection probability of disk blocks is not uniform. Instead,
to exploit locality, disk block selection probability increases as we approach the
tail of D (see Fig. 6).

In [21] it is shown that locality allows us to save about 40% of the memory
required to complete verification. This suggests to just use say 60% of the disk
blocks. Thus the size (number of blocks) of the disk cloud should be 60% of the
number of disk blocks. This works fine. However we can do more. Our experimen-
tal results show that, most of the time, we need much less than 60% of the disk
blocks to carry out the clean up implemented by function Checktable(). Thus
we dynamically adjust the fraction of disk blocks used by function Checktable().

3.5 Function Checktable()

Function Checktable() (Fig. 4), using disk file D, removes signatures of old (i.e.
visited) states from table M. Then, using such cleaned M, Checktable() removes
old states from the unchecked queue Q unck. Finally, Checktable() moves the
states that are in the (now cleaned) unchecked queue Q unck to the checked
queue Q ck.

3.6 Disk Cloud Creation

Function GetDiskCloud() (Fig. 5) is called by function Checktable() to create
our disk cloud. Function GetDiskCloud() selects disk cloud size disk blocks
according to the probability curve shown in Fig. 6.

We number disk blocks starting from 0 (oldest block). Thus the lower the
disk block index the older (closer to the head of file D) the disk block.

On the x axis of Fig. 6 we have the relative disk block index ρ, i.e. ρ =
<block index> /<number of blocks>. E.g. ρ = 0 is the (relative index of the)
first (oldest) disk block inserted in disk D, whereas ρ = 1 is the last (newest)
disk block inserted. On the y axis of Fig. 6 we have the probability of selecting
a disk block with a given ρ.

210 G.D. Penna et al.

b0

b1

b2

b3

a0 a1 a2 a3

S
el

ec
tio

n
P

ro
ba

bi
lit

y

Disk Blocks

Fig. 6. Probability curve for disk cloud block selection (used by GetDiskCloud())

The selection probability curve in Fig. 6 ensures that the most recently cre-
ated blocks (ρ close to 1) are selected with a higher probability than old blocks
thus exploiting transition locality [21]. Note that, defensively, the selection prob-
ability of old blocks (ρ close to 0) is b0 > 0. This is because we want to have some
old blocks to remove occasional far back states (i.e. states belonging to an old
BFS level far from the current one) reached by occasional non local transitions.

Function GetDiskCloud() returns to Checktable() the indexes of the se-
lected blocks.

Since our min and max values for the relative disk block indexes are, re-
spectively, 0 and 1, in Fig. 6 we have a0 = 0 and a3 = 1. The value of b3 is
always 1/K, where K is a normalization constant chosen so that the sum over
all disk blocks of the selection probabilities is 1. The pairs (a1, b1), (a2, b2) de-
fine our selection strategy. The values we used in our experiments are: a1 = 0.4,
b1 = 0.4/K, a2 = 0.7, b2 = 0.6/K.

Two strategies are possible to partition disk D in state signature blocks. We
can have either a variable number of fixed size blocks or a fixed number of
variable size blocks.

Reading a block from disk D can be done with a sequential transfer, whereas
moving disk heads from one block to another requires a disk seek operation.
Since seeks take longer than sequential transfers we decided to limit the number
of seeks. This led us to use a fixed number of variable size blocks.

Let N be the number of disk blocks we want to use and let S be the number
of state signatures in file D. Then each block (possibly with the exception of the
last one that will be smaller) has �S/N� state signatures. As a matter of fact,
to avoid having too small blocks, we also impose a minimum value B for the
number of state signatures in a block. Thus we may have less than N blocks if
S is too small.

Exploiting Transition Locality in the Disk Based Murϕ Verifier 211

Calibrate(deleted_in_cloud, deleted_not_in_cloud)
{
deleted_states = deleted_in_cloud + deleted_not_in_cloud;
beta = deleted_not_in_cloud / deleted_states;

if (beta is close to 1)
/* low disk cloud effectiveness: increase disk access rate */
{ /* increase disk_cloud_size by a given percentage */
disk_cloud_size = (1 + speedup)*disk_cloud_size; }

else
if (beta is close to 0)
/* high disk cloud effectiveness: decrease disk access rate */
{ /* decrease disk_cloud_size by a given percentage */
disk_cloud_size = (1 - slowdown)*disk_cloud_size; }}

Fig. 7. Function Calibrate()

In our experiments here we used N = 100 and B = 104. Thus, e.g. to have
100 disk blocks we need at least 106 reachable states.

3.7 Disk Cloud Size Calibration

Function Calibrate() (Fig. 7) is called by function Checktable() every time
a calibration is needed for the disk cloud size. Two parameters are passed to
function Calibrate(). Namely: the number of disk states deleted from M by
Checktable() by only using disk blocks that are in the disk cloud
(deleted in cloud in Fig. 7) and the number of disk states deleted from M by
only using disk blocks that are not in the disk cloud (deleted not in cloud in
Fig. 7).

Function Calibrate() reads the whole file D and computes the ratio (beta in
Fig. 7) between the number of deleted states not in the disk cloud and the number
of total deleted states (deleted states in Fig. 7). A value of beta close to 1 (low
disk cloud effectiveness) means that the disk cloud has not been very effective
in removing old states from table M. In this case, the variable disk cloud size
(holding the disk cloud size) is increased by (speedup*disk cloud size). A
value of beta close to 0 (high disk cloud effectiveness) means that the disk
cloud has been very effective in removing old states from table M. In this case,
we decrease the value of disk cloud size by (slowdown*disk cloud size) in
order to lower the disk access rate.

In our experiments here we used speedup = 0.15 and slowdown = 0.15.

3.8 Calibration Frequency

Function QueryCalibration() called by function Checktable() (Fig. 4) tells us
whether a calibration has to be performed or not. The rationale behind function
QueryCalibration() is the following.

Calling function Calibrate() too often nullifies our efforts for reducing disk
usage. In fact a calibration of the disk cloud size requires reading the whole file

212 G.D. Penna et al.

D. However calling function Calibrate() too sporadically may have the same
effect. In fact waiting too much for a calibration may lead to use an oversized
disk cloud or an undersized one.

An oversized disk cloud increases disk usage beyond needs. Also an undersized
disk cloud increases disk usage, since many old states will not be removed from
M and we will be revisiting many already visited states.

In our current implementation function QueryCalibration() enables a cal-
ibration for every 10 calls of function Checktable() (Fig. 4). Our experimental
results suggests that this is a reasonable calibration frequency.

4 Experimental Results

We implemented the LDBFS algorithm of Sect. 3 within the Murϕ verifier. In
the following we call DMurϕ the version of the Murϕ verifier we obtained.

In this section we report the experimental results we obtained by using
DMurϕ. Our experiments have two goals. First we want to know if by using
locality there is indeed some gain w.r.t. the algorithm proposed in [16]. Second
we want to measure DMurϕ time overhead w.r.t. standard Murϕ performing a
RAM-BFS.

To meet our goals we proceed as follows. First, for each protocol in our
benchmark we determine the minimum amount of memory needed to complete
verification using the Murϕ verifier (namely Murϕ version 3.1 from [11]). Then
we compare Murϕ performances with those of DMurϕ and with those of the disk
based algorithm proposed in [16].

Our benchmark consists of some of the protocols in the Murϕ distribution
[11] and the kerb protocol from [19].

4.1 Results with Murϕ

The Murϕ verifier takes as input the amount of memory M to be used during
the verification run as well as the fraction g (in [0, 1]) of M used for the queue
(i.e. g is gPercentActive using a Murϕ parlance).

We say that the pair (M , g) is suitable for protocol p iff the verification (with
Murϕ) of p can be completed with memory M and queue gM . For each protocol
p we determine the least M s.t. for some g, (M , g) is suitable for p. In the sequel
we denote by M(p) such an M .

Of course M(p) depends on the compression options used. Murϕ offers bit
compression (-b) and hash compaction (-c). Our approach (as the one in [16]) is
compatible with all Murϕ compression options. However, a disk based approach
is really interesting only when, even using all compression options, one runs out
of RAM. For this reason we only present results about experiments in which all
compression options (i.e. -b -c) are enabled.

Fig. 8 gives some useful information about the protocols we considered in
our experiments. The meaning of the columns in Fig. 8 is explained in Fig. 9.

Exploiting Transition Locality in the Disk Based Murϕ Verifier 213

mu -b -c
Protocol and
Parameters

Bytes
Diam

Reach Rules Max Q M g T
ns
1,1,3,2,10

96
12

2,455,257 8,477,970 1,388,415 145,564,125 0.57 1,211.02
n peterson
9

20
241

2,871,372 25,842,348 46,657 15,290,000 0.02 764.27
newlist6
7

32
91

3,619,556 21,612,905 140,382 22,590,004 0.04 1,641.67
ldash
1,4,1,false

144
72

8,939,558 112,808,653 509,751 118,101,934 0.06 12,352.93
sci
3,1,1,2,1

60
94

9,299,127 30,037,227 347,299 67,333,575 0.04 2,852.03
mcslock1
6

16
111

12,783,541 76,701,246 392,757 70,201,817 0.03 3,279.45
sci
3,1,1,5,1

64
95

75,081,011 254,261,319 2,927,550 562,768,255 0.04 35,904.86
sci
3,1,1,7,1

68
143

126,784,943 447,583,731 4,720,612 954,926,331 0.04 99,904.47
kerb
NumIntruders=2

148
15

7,614,392 9,859,187 4,730,277 738,152,956 0.62 2,830.83
newlist6
8

40
110

81,271,421 563,937,480 2,875,471 521,375,945 0.03 31114.87

Fig. 8. Results on a INTEL Pentium III 866Mhz with 512M RAM. Murϕ options
used: -b (bit compression), -c (40 bit hash compaction), -ndl (no deadlock detection).

Attribute Meaning
Protocol Name of the protocol.

Parameters

Values of the parameters we used for the protocol. We show our param-
eter values in the same order in which such parameters appear in the
Const section of the protocol file included in the Murϕ distribution [11].
When such list is too long, as for the kerb protocol, we just list the
assignments we modified in the Const section w.r.t. the distribution.

Bytes

Number of bytes needed to represent a state in the queue when bit com-
pression is used. For protocol p we denote such number by StateBytes(p).
Note that since we are using bit compression as well as hash compaction
(-b -c), 5 bytes are used to represent (the signature of) a state in the
hash table.

Reach
Number of reachable states for the protocol. For protocol p, we denote
such number by |Reach(p)|.

Rules
Number of rules fired during state space exploration. For protocol p, we
denote such number by RulesFired(p).

Max Q Maximum queue size (i.e. number of states) attained during space state
exploration. For protocol p we denote such number by MaxQ(p).

Diam Diameter of the transition graph.

M

Minimum amount of memory (in kilobytes) needed to complete state
space exploration. That is M(p). Let bh be the number of bytes taken
by a state in the hash table (for us bh = 5 since we are using hash
compaction). From the Murϕ source code [11] we can compute M(p). We
have: M(p) = |Reach(p)| (bh + (MaxQ(p)/|Reach(p)|)StateBytes(p)).

g
Fraction of memory M used for the queue. From the Murϕ source code
[11] we can compute g. We have: g = MaxQ(p)/|Reach(p)|.

T
CPU time (in seconds) to complete state space exploration when using
memory M and queue gM. For protocol p, we denote such number by
T (p).

Fig. 9. Meaning of the columns in Fig. 8.

214 G.D. Penna et al.

From column M of Fig. 8 we see that there are protocols requiring more than
512M bytes of RAM to complete. Thus we could not use standard Murϕ on our
512M PC. However we were able to complete verification of such protocols using
Cached Murϕ (CMurϕ) [3]. Giving to CMurϕ enough RAM we get a very low
collision rate and from [21] we know that in this case the CPU time taken by
CMurϕ is essentially the same as that taken by standard Murϕ with enough
RAM to complete the verification task. For this reason in the following we will
regard the results in Fig. 8 as if they were all obtained by using standard Murϕ
with enough (i.e. M(p)) RAM to complete the verification task.

4.2 Results with DMurϕ

Our next step is to run each protocol p in Fig. 8 with less and less (RAM) memory
using our DMurϕ. Namely, we run protocol p with memory limits M(p), 0.5M(p)
and 0.1M(p).

This approach allows us to easily compare the experimental results obtained
from different protocols. The results we obtained are in Fig. 10. We give the
meaning of rows and columns in Fig. 10.

Columns Protocol and Parameters have the meaning given in Fig. 9.
Column α (with α = 1, 0.5, 0.1) gives information about the run of protocol

p with memory αM(p).
Row States gives the ratio between the visited states (by DMurϕ) when using

memory αM(p) and |Reach(p)| (in Fig. 8). This is the state overhead due to re-
visiting already visited states. This may happen since in function Checktable()
(Fig. 4) we do not use the whole disk file D to remove old states from table M.

Row Rules gives the ratio between the rules fired (by DMurϕ) when using
memory αM(p) and RulesFired(p) (in Fig. 8). This is the rule overhead due to
revisiting already visited states.

RowTime gives the ratio between the time TDMurϕ,α(p) (in seconds) to com-
plete state space exploration (with DMurϕ) when using memory αM(p) and T (p)
in Fig. 8. This is our time overhead w.r.t. RAM-BFS. Note that TDMurϕ,α(p) is
the time elapsed between the start and the end of the state space exploration
process. That is TDMurϕ,α(p) is not just the CPU time, instead TDMurϕ,α(p)
also includes the time spent on disk accesses.

Note that for the big protocols in Fig. 8 (i.e. those requiring more than 512M
of RAM) we could not run the experiments with α = 1 on our machine with
512M of RAM. However, of course, the most interesting column for us is the one
with α = 0.1.

The experimental results in Fig. 10 show that even when α = 0.1 our disk
based approach is only between 1.4 and 5.3 (3 on average) times slower than a
RAM-BFS with enough RAM to complete the verification task.

Exploiting Transition Locality in the Disk Based Murϕ Verifier 215

Protocol Parameters Mem 1 0.5 0.1
n peterson 9 States 1.178 1.124 1.199

Rules 1.178 1.124 1.199
Time 2.148 2.056 2.783

ns 1,1,3,2,10 States 1.348 1.405 1.373
Rules 1.487 2.011 1.645
Time 1.734 2.144 1.953

newlist6 7 States 1.366 1.335 1.384
Rules 1.365 1.334 1.382
Time 1.703 1.765 2.791

ldash 1,4,1,false States 1.566 1.668 1.702
Rules 1.528 1.626 1.658
Time 2.037 2.226 3.770

sci 3,1,1,2,1 States 1.260 1.189 1.183
Rules 1.279 1.206 1.200
Time 1.811 1.798 2.888

mcslock1 6 States 1.346 1.550 1.703
Rules 1.346 1.550 1.703
Time 1.915 2.477 5.259

sci 3,1,1,5,1 States — 1.169 1.143
Rules — 1.195 1.167
Time — 1.828 2.553

sci 3,1,1,7,1 States — 1.130 1.097
Rules — 1.152 1.115
Time — 1.421 1.743

kerb NumIntruders=2 States 1.282 1.279
Rules — 1.060 1.080
Time — 1.234 1.438

newlist6 8 States — 1.416 1.406
Rules — 1.412 1.405
Time — 2.612 4.436

Min Time 1.703 1.234 1.438
Avg Time 1.891 1.954 2.961
Max Time 2.148 2.612 5.259

Fig. 10. Comparing DMurϕ with RAM Murϕ [11] (compression options: -b -c)

4.3 Results with Disk Based Murϕ

To measure the time speed up we obtain by exploiting locality we are also in-
terested in comparing our locality based disk algorithm DMurϕ with the disk
based Murϕ presented in [16].

The algorithm in [16] is not available in the standard Murϕ distribution [11].
However, if we omit the calibration (Fig. 7) step in function Checktable() (Fig.
4) and always use all disk blocks to clean up the unchecked queue Q unck and

216 G.D. Penna et al.

Protocol Parameters Mem 1 0.5 0.1
n peterson 9 States 1.000 1.000 0.527

Rules 1.000 1.000 0.507
Time 2.623 2.430 > 90.704

ns 1,1,3,2,10 States 1.000 1.000 0.747
Rules 1.000 1.000 0.309
Time 1.259 242.131 >77.895

newlist6 7 States 1.000 1.000 0.253
Rules 1.000 1.000 0.203
Time 1.331 1.357 >42.817

ldash 1,4,1,false States 0.355 — —
Rules 0.245 — —
Time >50.660 — —

sci 3,1,1,2,1 States 1.000 0.361 —
Rules 1.000 0.647 —
Time 1.616 > 11.863 —

mcslock1 6 States 1.000 1.000 0.137
Rules 1.000 1.000 0.115
Time 1.821 1.691 >11.605

Fig. 11. Comparing Disk Murϕ in [16] with RAM Murϕ [11] (compression options: -b
-c)

table M (Fig. 1) we obtain exactly the algorithm in [16] (quite obviously since
[16] was our starting point). Thus in the sequel for the algorithm in [16] we use
the implementation obtained as described above.

For the algorithm in [16] (implemented as above) we wanted to repeat the
same set of experiments we run for DMurϕ. However the big protocols of Fig. 8
took too long. Thus we did not include them in our set of experiments.

Our results are in Fig. 11. Rows and columns in Fig. 11 have the same
meaning as those in Fig. 10, but those of Fig. 11 refer to the algorithm in [16]
(while those of Fig. 10 refer to DMurϕ).

Computations taking too much longer than the time in Fig. 8 were aborted.
In such cases we get a lower bound to the time overhead w.r.t. standard Murϕ.
This is indicated with a > sign before the lower bound.

For aborted computations the rows States and Rules are, of course, less
than 1 and give us an idea of the fraction of the state space explored before the
computation was terminated.

Fig. 12 compares performances of our DMurϕ with those of the disk based
Murϕ in [16]. The meaning of rows and columns of Fig. 12 is as follows.

Columns Protocol, Parameters and column α (with α = 1, 0.5, 0.1) have
the meaning given in Fig. 9.

Row Time gives the ratio (or a lower bound to the ratio) between the verifi-
cation time when using disk based Murϕ in [16] and the verification time when
using DMurϕ.

Of course the interesting cases for us are those for which α = 0.1 (i.e. there
is not enough RAM to complete verification using a RAM-BFS). For such cases,

Exploiting Transition Locality in the Disk Based Murϕ Verifier 217

Protocol Parameters Mem 1 0.5 0.1
n peterson 9 Time 1.221 1.182 > 32

ns 1,1,3,2,10 Time 0.726 112.934 > 39
newlist6 7 Time 0.781 0.768 > 15
ldash 1,4,1,false Time > 24 > 24 > 24
sci 3,1,1,2,1 Time 0.892 > 6 > 6

mcslock1 6 Time 0.950 0.683 > 2

Min Time 0.726 0.683 > 2
Avg Time >4.762 > 24.261 > 19.667
Max Time > 24 112.934 > 39

Fig. 12. Comparing DMurϕ with disk based Murϕ in [16].

from the results in Fig. 12 we see that our algorithm is typically more than 10
times faster than the one presented in [16].

Note however that the results in Fig. 12 should be regarded more as qual-
itative results rather than quantitative results. In fact, as described above, we
obtained the algorithm in [16] by eliminating the calibration step from our algo-
rithm. It is quite conceivable that when calibration is not to be performed one
can devise optimizations that are not possible when calibration has to be per-
formed. Still, the message of Figs. 10, 11, 12 is quite clear: because of transition
locality most of the time we do not need to read the whole disk D. This saves
disk accesses and thus verification time.

Protocol Parameters Bytes Reach Rules MaxQ
mcslock2 N = 4 16 945,950,806 3,783,803,224 30,091,568

Diam T Mem HMem QMem TotMem
153 406,275 300 4,729,754 481,465 5,211,219

Fig. 13. Results for DMurϕ on a 1GHz Pentium IV PC with 512M of RAM. Murϕ
options used: -ndl (no deadlock detection), -b (bit compression), -c (40 bit hash
compaction).

4.4 A Large Protocol

We also wanted to test our disk based approach on a protocol out of reach for
both standard Murϕ [4,11] and Cached Murϕ [21,3] on our 512M machine.

We found that the protocol mcslock2 (with N = 4) in the Murϕ distribution
suites our needs. Our results are in Fig. 13. The meaning of the columns of Fig.
13 is as follows.

Columns Protocol, Parameters, Bytes, Reach, Rules, MaxQ, Diam, T
have the same meaning as in Fig. 8 but they refer to DMurϕ (while those of Fig.
8 refer to standard Murϕ).

Column Mem gives the total RAM memory (in Megabytes) given to DMurϕ
to carry out the given verification task.

218 G.D. Penna et al.

Column HMem gives the hash table size (in kilobytes) that would be needed
if we were to store all reachable states in a RAM hash table.

Column QMem gives the RAM size (in kilobytes) needed for the BFS queue
if we were to keep all BFS queue in RAM.

Column TotMem gives the RAM size (in kilobytes) needed to complete the
verification task using a RAM-BFS with standard Murϕ. TotMem is equal to
(HMem + QMem).

5 Conclusions

We presented a disk based Breadth First Explicit State Space Exploration algo-
rithm as well as an implementation of it within the Murϕ verifier. Our algorithm
has been obtained from the one in [16] by exploiting transition locality [21] to
decrease disk usage (namely, disk read accesses).

Our experimental results show the following. Our algorithm is typically more
than 10 times faster than the disk based algorithm proposed [16]. Moreover, even
when using 1/10 of the RAM needed to complete verification, our algorithm
is only between 1.4 and 5.3 times (3 times on average) slower than RAM-BFS
(namely, standard Murϕ) with enough RAMmemory to complete the verification
task at hand.

Statistical properties of transition graphs (as transition locality is) have
proven quite effective in improving state space exploration algorithms ([21,22])
on a single processor machine. Looking for new statistical properties and for ways
to exploit such statistical properties when performing verification on distributed
processors are natural further developments for our research work.

Acknowledgements. We are grateful to Igor Melatti and to FMCAD referees for
helpful comments and suggestions on a preliminary version of this paper.

References

[1] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. on Computers, C-35(8), Aug 1986.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, (98),
1992.

[3] url: http://univaq.it/∼tronci/cached.murphi.html.
[4] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a

hardware design aid. In IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pages 522–5, 1992.

[5] R. Sisto F. Lerda. Disributed-memory model checking with spin. In Proc. of 5th
International SPIN Workshop, volume 1680. LNCS, Springer, 2000.

[6] G. J. Holzmann. The spin model checker. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997.

[7] G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in Systems
Design, 1998.

Exploiting Transition Locality in the Disk Based Murϕ Verifier 219

[8] A. J. Hu, G. York, and D. L. Dill. New techniques for efficient verification with
implicitily conjoined bdds. In 31st IEEE Design Automation Conference, pages
276–282, 1994.

[9] C. N. Ip and D. L. Dill. Better verification through symmetry. In 11th Inter-
national Conference on: Computer Hardware Description Languages and their
Applications, pages 97–111, 1993.

[10] C. N. Ip and D. L. Dill. Efficient verification of symmetric concurrent systems.
In IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pages 230–234, 1993.

[11] url: http://sprout.stanford.edu/dill/murphi.html.
[12] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-Vincentelli.

Binary decision diagrams on network of workstations. In IEEE International
Conference on Computer Design, pages 358–364, 1996.

[13] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. Sangiovanni-Vincentelli.
High performance bdd package by exploiting memory hierarchy. In 33rd IEEE
Design Automation Conference, 1996.

[14] url: http://netlib.bell-labs.com/netlib/spin/whatispin.html.
[15] U. Stern and D. Dill. Parallelizing the murϕ verifier. In Proc. 9th Int. Conference

on: Computer Aided Verification, volume 1254, pages 256–267, Haifa, Israel, 1997.
LNCS, Springer.

[16] U. Stern and D. Dill. Using magnetic disk instead of main memory in the murϕ
verifier. In Proc. 10th Int. Conference on: Computer Aided Verification, volume
1427, pages 172–183, Vancouver, BC, Canada, 1998. LNCS, Springer.

[17] U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction.
In IFIP WG 10.5 Advanced Research Working Conference on: Correct Hardware
Design and Verification Methods (CHARME), pages 206–224, 1995.

[18] U. Stern and D. L. Dill. A new scheme for memory-efficient probabilistic verifica-
tion. In IFIP TC6/WG6.1 Joint International Conference on: Formal Description
Techniques for Distributed Systems and Communication Protocols, and Protocol
Specification, Testing, and Verification, 1996.

[19] url: http://verify.stanford.edu/uli/research.html.
[20] T. Stornetta and F. Brewer. Implementation of an efficient parallel bdd package.

In 33rd IEEE Design Automation Conference, pages 641–644, 1996.
[21] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. Exploiting

transition locality in automatic verification. In IFIP WG 10.5 Advanced Re-
search Working Conference on: Correct Hardware Design and Verification Meth-
ods (CHARME). LNCS, Springer, Sept 2001.

[22] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli. A probabilistic
approach to space-time trading in automatic verification of concurrent system.
In Proc. of 8th IEEE Asia-Pacific Software Engineering Conference (APSEC),
Macau SAR, China, Dec 2001. IEEE Computer Society Press.

[23] Pierre Wolper and Dennis Leroy. Reliable hashing without collision detection. In
Proc. 5th Int. Conference on: Computer Aided Verification, pages 59–70, Elounda,
Greece, 1993.

	Introduction
	Transition Locality for Finite State Systems
	A Disk Based State Space Exploration Algorithm Exploiting Transition Locality
	Data Structures
	Function texttt {Search()}
	Function texttt {Insert()}
	Exploiting Locality in State Filtering
	Function texttt {Checktable()}
	Disk Cloud Creation
	Disk Cloud Size Calibration
	Calibration Frequency

	Experimental Results
	Results with Mur$varphi $
	Results with DMur$varphi $
	Results with Disk Based Mur$varphi $
	A Large Protocol

	Conclusions

